AD=A039 566 Y F/6 1271
SYNCHRONIZATION AND COMPUTING CAPABILITIES OF LINEAR ASYNCHRONO==ETC(U)
OCT 75 R J LIPTON:, R E MILLERs L SNYDER N00014=75=C=0752

UNCLASSIFIED RC-5857 NL

END
67

|I|I| |0 &0 j22
—_— i (|32

== : = 1z
l““ T

I

it e

N
O

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

SECURITY CLASSIFICATION OF Tw'S BPAGE rMhen Daia Faterad,

L

Ramlxwwucx'o-\c

. i REPORT DOCUMENTATIONP AGE: o ooaby BT FoRY
1. REPORT NUMBER 2. GC /T ACCES, T'S CATALOG NUMBER / /
FTIURBER -
_[L/ RC-5857 | s
Lo’ 1
TITL Subt i TY OF REPORT & PERIOD COVERED

C/ Sy*lcnro'uzatlon and Conpui.lng Capablllt.J. > / «?/ . i
of Linear Asynchronous Structures , - - Technical 4 ~ 72{ /
\ i s 5. PERFORmNcoRG.REPO&?%33§§#7~_
7. AUTHORC 8. CONTRACT OR GRANT NUMBER(s)
ol Richard J./Lipton,] //P—“}
Raymond E./Miller : \/CS» N0b014 75'C‘¢552

S22 F

ASK

\

Lawrence/ Snyder
MING ORGANIZA

AME AND ADDRESS 10. PROGRAM ELEMENT

1ON
i AREA & WORK UNIT NUMBERS '

AD A 039566

Yale University v/
Department of Computer Science -
; 10 Hillhouse Ave, New Haven, COT 06520 PSS
H 1. CONTROLLING OFFICE tAME AND ADCRESS 12. REPORT DATE /. 08 g
’ ; D Bl 75 |
i Office of Naval Research R 9 4
! Information Systems Program 13. KUMBER OF PAGES
5 Arlington, Virginia 22217
B 14. MCONITORING AGENCY NAME & AUORESS(1f cillerent trom Controlling Gflice) 15. SECURITY CLASS. (of this report)
3 { Unclassified
: § 156, DECLASSIFICATION. DOWNGRAZING
¢4 SCHEDULE
4
}, 16. DISTRIBUTION STATEMENT (of this Report) &
: Distribution of this repcrt is unlimited !

18. SUPPLEMELNTARY NOTES \\,1?

14, KEY WORDS (Continue on tevorse side if necessary and identify by block number)

parallel systems cellular arrays
linear asynchronous structures
firing squad synchronization problem
" Church Rosser Thﬂorcm
delay

20, ABSTRACT (Continue on reverse side If necessary and Identify by biock number)

>

Q.

o A model is defined in which questions concerning delay bounded asynrhronou?
(- parallel systems may be investigated. It is shdgw that synchronization pro-
e blems, similar to the "firing squad synchronlzatloﬁ problem,”’éannot be solved
T by delay bounded asynchronous systems. Three conditions called persistence,
t:: cdeterminacy, and single change are introduced. These conditions are shown to

' be sufficient to guarantee that a synchronous execution policy can be re- *
laxed to an asynchronous execution policy with no change to the result of the
computation. This is a Church-Rosser type theorem, but in addition, thc —= predt .
———— g a3 #
DD ,Si%s 1473 Eoimion oF 1 NOV 6515 GBSOLETE 14

srcumTYCLAMHWCNHONOF1»u:pAoc(65;P~~1:fﬁw
t

é,fo‘/ 4)7:7-" b =g - 421.

E
'E

TR e A G S AT A AR s o s i

#20

asynchronous execution time is shown to be only (D+1) times the
synchronous execution time, where D is the delay bound. Finally,
a wide class of recognition problems is identified which can be solved

by linear asynchronous structures. =

e
o
- ~
-4
i

RC 5857
(#25330)
2/11/176
Computer
Science

40 pages

SYNCHRONIZATION AND COMPUTING CAPABILITIES OF
LINEAR ASYNCHRONOUS STRUCTURES'

Rai s Lipton*

Department of Computer Science
Yale University

10 Hillhouse Avenue

New Haven, Connecticut 06520

R. E. Miller

Mathematical Sciences Department

IBM Thomas J. Watson Research Center
P. 0. Box 218

Yorktown Heights, New York 10598

L. Snyder**

Department of Computer Science
Yale University

10 Hillhouse Avenue

New Haven, Connecticut 06520

ABSTRACT: A model is defined in which questions concerning
delay bounded asynchronous parallel svstems may be investi-
gated. It is shown that synchronization problems, similar to
the "firing squad synchronization problem,'" cannot be solved
by delay bounded asynchronous systems. Three conditions called
persistence, determinacy, and single change are introduced.
These conditions are shown to be sufficient to giar~ntee that
a synchronous execution policy can be relaxed tc an asynchro-
nous execution policy with no change to the result of the
computation. This is a Church-Rosser type theorem, but in
addition, the asynchronous execution time is shown to be only
(D+1) times the synchronous execution time, where D is the
delay bound. Finally, a wide class of recognition problems is
identified which can be solved by linear asynchronous
structures.

: A preliminary version of this paper was presented at the
IEEE Symposium on Foundations of Computer Science,
Berkeley, California, October 1975.

-

Supported in part by Office of Naval Research under grant
N00014-75-C~0752.
*

Also, supported in part under NSF grant DCR-74-12870, and
part of this work was done while visiting IBM Research
Center.

oo Tbileasi s

B T L S AR |

LIMITED DISTRIBUTION NOTICE :

3 o St et L e U S L BNy e S & A »

This report has been submitted for publication elsewhere and i
i has heen issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it 3
should not be widely distributed until after the date of outside ‘ ;
. publication. 3
i
3
£
1% 2
'S
(2
i
¥
i
5
&
i
4
;
q
A
’

Copies may be requested from:

IBM Thomas J. Watson Research Center
Paost Office Box 218

Yorktown Heights, New York 10598

o g e AR R SN LTS

1. Introduction

Computational systems, whether they be hardware or software, are
usually envisioned as an interconnection of a number of separate and distinct
processes. Each of the processes is assumed to perform a particular task,
obtaining inputs from other processes in the system and providing results
to other processes in the system. The function of the whole system is
accomplished through the combined effort of the distinct processes acting
in concert. A specification of the overall control of when processes
are to act and communicate with each other is usually required to insure
proper operation of the system. In programs this is usually done by specifying
the "flow of control" of the program, whereas in hardware this is usually
done by having a centralized control unit which emits control signals
to the processes. As is well known, efficiencies can often be realized
by having several processes act simultaneously, or in parallel, rather
than having a single sequence of process actions. Such parallel computation,
however, is often quite complex to control, especially when the time of
process performance is variable.

In this paper we study the intercommunication problems for systems
of interconnected processes, acting in parallel, where the time required
for a process to act is not known exactly. As a simplifying assumption
we restrict our attention here to linear interconnection of processes.
The results we obtain are then directly applicable to such "linear structures."
Also this provides some information about systems having more complex
interconnection since in any such system there are linear chains of inter-

connected processes. The linearity assumption allows us to draw on, and

el

:
g
%;

3
]
A
:
]
3

e s T O R

s

D

5

compare our results with, the extensive work done on synchronous linear
structures. For example, the "Firing Squad Synchronization Problem" [7]

is one of the earliest questions studied in this context. Since ghat time,
a large quantity of literature has appeared on cellular machines, iterative
arrays, parallel grammars, L-systems, etc. [2,4,9,10]. All of these studies

assume synchronous computation. That is, at each discrete moment in time,

if a machine can perform some transition (or, in the grammatical case, if a
production applies) then that transition must be performed. The conscquences
of relaxing the synchronous requirement to asynchronous operation are:
first, that some tasks which can be done synchronously cannot even be
approximated asynchronously, and second, for those synchronous computations
that can be realized asynchronously, the previously used techniques fail to
apply and a new set of techniques must be developed. The asynchronous
assumpt ion is a useful one to make since often processes have execution
times which depend upon the data. We do assume that the times are known to
be within some upper and lower bounds, although they may vary with tine
within these bounds. Examples where such situations arise include both
cellular arrays of devices, where each device runs at some nonzero rate,
and operating systems, where each process is given a nonzero, but somewhat
variable, amount of time to act.
Our model, to be formally defined in the next section, hypothesi.es a

system of n identically structured finite state machines organized us a

lincar array. Each machine is allowed to communicate with other machines
in its own neighborhood (not necessarily just with its adjacent neighblors).

The time is measured in a relative fashion, with one step elapsing whenever

|
&
¥
5
£
i
¥

et~

e
B

PR USSP« S SN S—

o4
-
¢ |
1
g
A

I R U NN R DT R R S

some machine(s) change state. A given machine is said to become active
when it is first capable of a transition. (Identity transitions are not
allowed, so a device may not be capable of another state change immediately
after a transition has taken place.) Once active, the machine can perform
the state change at any step. However, no machine can remain active, with-
out changing state, for more than D steps. The delay, D, is a nonnegative
integral value which gives the number of steps any processor is allowed to
remain idle prior to completing a computational step. Hence, when D = 0,
no idle steps are allowed, each processor completes execution at each step
and, therefore, the system is synchronous. When D > 0, the system is
asynchronous and the processors operate at a worst case rate of once every
D + 1 steps.

Clearly, because the rate of execution is a parameter, the model to be
described will be equally capable of characterizing synchronous, as well as
asynchronous, computation. Indeed, by varying D, a single system can be
executed using either policy. This facilitates our study of the relationships
between synchronous and asynchronous parallel computation. }

Several comments are in order. First, note that no assumption is made
as to whether or not the relative time steps are of equal length. Further-
more, no assumption is made about how long it takes for a given device to
change state, except that it is bounded. Consequently, we are allowing the
execution time of a given device to change for any reason whatsoever. The
same transition can even take a different number of steps for different
devices or for the same device at different points in the computation. All

that is required is that it be bounded by D + 1 (D is fixed for any given

|

s
)

IR S B - S At e

»

SR

SR Y

[
&

computation). This point of view is motivated by an interest in modelling
parallel circuits as well as operating systems. In the former case, the
performance of the device may be influenced by physical characteristics of
the components. In the latter case, a process may be influenced by competi-
tion with other processes for resources, or influenced by I/0 or some
other exogenous variables. In any case, if the delay D cannot be chosen
precisely for a given system, then it may be considered to be a limit beyond
which the failure of a processor to execute is interpreted as a failure of
the entire system.

A second observation is that the assumption of "identically structured"
processes is not overly restrictive. The assumption should probably be
stated as '"identically structured with respect to the interaction among
processes." Hence, the interaction of multiple instances of processes
which communicate in the same manner is being studied. Any computation not
relevant to this communication is allowed; since it doesn't influence the
overall synchronization behavior, however, it can be ignored.

Finally, a word of warning is in order about the role of D. D, as
it is used in the sequel, is the delay, or the number of idle steps allowed
before a device must execute. Consequently, the "firing frequency" tor
processors which are always active will, in the worst case, be once every

D+ 1 steps. Thus, for the synchronous case, D = 0, the devices must fire
at each step and, therefore, no idle steps are allowed for active processors.
The main question addressed in this paper is:
How do linear arrays of machines operating synchronously compare

with linear arrays of machines operating asynchronously in terms

of computational and synchronization characteristics?

T e e R RIS A S Y e L UG B N AR
- e e TN 3 B

s,

s

|
|
b

T

(S e 23

T ET T TR

2
o
PRSI PRSP ..~ Wi

M i

= S

First of all we note that observed globally, a synchronous array has precisely
one execution sequence (assuming, as we do, that the machines are determin-

istic). By contrast, an asynchronous array defines a set of computations

corresponding to the differing execution rates of the individual machines.
Obviously, one of these computations is a ''synchronous' computation (in the
sense that each machine executes without any delay). Thus, if we consider
an asynchronous computation to be well behaved if the computed result is
independent of the individual execution rates, then clearly, anything that
can be computed asynchronously can be computed synchronously. Our main
question thus reduces to: are asynchronous arrays weaker than synchronous
arrays? The answer depends upon whether we speak of synchronization ability
or computational ability.
It is known that cellular arrays can solve a synchronization problem :

known as the "firing squad synchronization problem," [7]. It would be fool-

o g

e

ish to expect an asynchronous linear array to solve this problem (for D > 0)

since the soldiers may or may not choose to "fire' at the appointed moment.
But suppose that we required all soldiers to "fire" within an interval of
size D. ‘It will be shown that this simpler problem cannot be solved!
Indeed, a stronger result will be shown. Hence, with respect to synchroniz-
ing qualities, the asynchronous linear arrays are weaker than their synchro-
nous counterparts.

By contrast, it will be shown that for language recognition problems,
asynchronous arrays are no weaker than the synchronous linear arrays. This f‘

is unexpected since in the synchronous arrays the techniques used to solve

the firing squad problem are central to the solution of recognition problems.

T e N SN s 5 N P 9

ol b

In [10] the recognition questions were analyzed in terms of the time required

by the linear array. Hence, it is not only of interest whether a particular

set can be recognized, but the time required in comparison to the synchronous

VR o S e s S i s

e M a A N ST VR

case is also relevant. We show that it takes at most 3(D+l) times longer.

This last result uses another of our main theorems. Namely, we identify
three properties of linear asynchronous systems -- determinacy, persistence,
and single change -- and show that these are sufficient to guarantee that
any system with these properties operates asynchronously at most (D+1) times ! ;
slower than it does synchronously, for all D. With this result we obtain
an effective strategy for solving a problem with asynchronous systems:

First find a synchronous system for the task. Establish determinacy,

persistence, and single change, and then invoke the above theorem. The

validity and performance are thus established.
The format of the remainder of the paper is as follows. Section 2
gives initial definitions and illustrative examples. Section 3 shows the

impossibility of a linear asynchronous system solving the firing squad

; *
synchronization problem. Section 4 proves the CR Theorem on the synchron-
ous to asynchronous relationship. Section 5 establishes the equivalence

between synchronous and asynchronous recognition, and Section 6 poses some

open problems.

.
b s

v
b 5 g o 2

*
The name is motivated by the fact that this theorem has a flavor similar
to the Church-Rosser Theorem of Lambda Calculus. [1,3].

Sk

2. Basic Definitions and Examples

SR o e e L0 8 =
’ e s o
DI W R, i

In this section we introduce the basic model, present examples and
provide further motivation.

Although we have purposely chosen a model that is closely related
to the iterative arrays and cellular automata models so as to provide conve-
nient comparison, we have not used the finite state machine as a basic con-
stituent of the model. Instead, we avoid the cumbersome details of these
machines by basing the model on a rewriting system that we call an asynchro-
nous grammar. Even so, we will continue to employ the machine metaphor in
our informal discussions; first because it is a handy conceptual tool, and
second because we believe the work includes application to asynchronous

systems that are actually implemented as circuits.

Definition 2.1. An asynchronous grammar G = <L, P> consists of a finite

alphabet I and a finite set P of productions of the form a — B where

*
(£} o; B e %

(1) |a| = |8) T

(iii) o # B.
Hence, an asynchronous grammar is a rewriting system with length pre-

serving, non-identity productions over the alphabet. The state of a linear

arrav of n machines is thus represented by a word X Xyt X € B, b

o+
|

la| denotes the length of string «

Subscripts are used to denote coordinate positions.

s G i A i 2 A A 4 PN 30 o > T e I e

A rule o — B models changes in the state of machines in terms of

their own states and the states of neighboring machines. The a # B
constraint is intuitively natural since in an asynchronous system the only
detectable action is a change in a state. Remaining in a state is considered
as no action.

Given a string XptoX o, suppose there is a production a — B

such that
= % x L) s }
¢ X %41 xJ ;

Then @ —> @ ‘can be applied to XqTtUX and if B = Yi yi+1"-yj we |

obtain the string xl---xi_l ¥s yi+l“'yj xj+l..'xn' Thus, successive
modifications to some initial string in P owin represent the successive
state changes in the linear asynchronous structure.

A particularly simple case is that for an ordinary array of n
machines where any machine's next state depends only upon its current state
and the current states of its two neighbors. This situation is represented
by a grammar in which]u[= 3. The middle symbol representing the machine
under consideration and the two end symbols represent the neighbors. Thus a
production o — 3 would take the form: ajaa; — blb2b3, where a = bl’
ay = b3 and a, # b2 indicating the desired change.

A precise description of how changes can occur due to production

application is:

i = L n = L n
Definition 2.2. Let x = Xy X, € L and vy Y1 e i

We write x +—y provided x # y and X4 # Yy implies there exists a

production G TP T Bl-"Bk ¢ P such that

LR
o N <

s s e

B TR Y

9
() @3, 1L = j = n such that X g1t XL Xy ek
&= alcucaj...ak, and
(ii) 8, whenever o # B, for s = 1,2,+++,k.

Informally, Xptooxy I—-—-yl---yn if wherever a change takes place (xi # yi),
then there is some production matching some context around X, (requirement
(i)) and that each change implied by the production (us # BS) is reflected

in the result (BS =y). This definition is quite general, allowing

i=i%s
overlapping application of productions.
Example 2.1. Let G = <{1,2,3}, €12 — 13,23 —+ 91 12 — 33}>,
Then the following are allowed:
123 +— 133
1A

123 = 333
£23/F— 331

Note that consistent overlapping is allowed and that in the last two cases,
it is ambiguous whether 12 — 13 is applied, since it is subsumed by
EZ =g

Example 2.2: Let G = <{1,2}, {12 — 21}> then

BEZL2E E=nEZ bl
212122 P 12212
EPZ2E22 (= TA1 212

Note that this grammar is non-overlapping. We shall have more to say

about this grammar later.

Definition 2.3. Given G = <% , P> and Xjooex € s" coordinate 1 is

n

active in Xyt X, provided there exists a ¥1° "V € & such that
1

. et W padh At and Xy # vy

B 3 AR ARG 5

10

Notation: Superscripts will be used to denote elements of a sequence.

* *
The reflexive, transitive closure of }— 1is denoted +— . Hence xt— y

if and only if there exist XO, xl,xz,'--,xq (g 2 0) such that

0 i 2 q :
XxX=%x F—x b—x"pF—+b—x" = y. We write xhF—y to denote a single
o x

application of production p to string x, while xt—T y means that
exactly one production has been applied.
We are now ready to introduce the delay property into our asynchro-
nous model.
0 -k n

Definition 2.4. Let X X ,*** € L , G = <L, P> be an asynchronous

grammar and D > O be an integer. The sequence xo,xl,xz,--- is a

D-computation provided:

xJ+1

; (i) Vj -0, x3 +— and

)

j+ i o
(ii) ﬂ i,j such that xi = xq . and coordinate i 1is active in

i
xJ+k for all k = 0,1,2,°¢*,Dtl:

Hence a D-computation is a legal sequence of state transformations such
that no active coordinate remains unchanged for D + 1 consecutive steps.
Example 2.3. Let Gy 1* <A 2R L2 = s S e e

111222 B 112122
| et 243 041 62
— 212121
2212 1L
=22

is a O-computation for Gl’ while

111222 p— 112122
121122
211212
212112
221121
221211
222111

—
’—
’.——
[—
[—
—

b (e ke g Al R L

T

. *
SRR P L RN

sy
-

A A G A A W SIS S el SN oo s ol s D

B e g e =

R Ry

13

is one of the l-computations for G1 on 1X12227
Note that two active but idle transitions have been underscored.
Evidently, G1 moves all 2's to the left and all 1's to the
right in both the O-computation and this particular l-computation. Is
this always the case for all D and all D-computations and how long does
it take? We claim
(i) for any input of 1's and 2's, Gl shifts
all 2's to the left and all 1l's to the
right while preserving the total number of each

for any O-computation,

(i1) for all D, property (i) holds as well for all
D-computations, and
(iii) any D-computation for G1 halts in time less

than &§(D+l)n for some constant & 2 1.

The ¢laim is quite intuitive but it is not simple to prove directly. For

example, it is not the case even for a O-computation, that once a 2 begins

moving left, it continues to do so at a rate of at least 1/(D+l). This

is because a 2 can "run into" a long sequence of 2's and be blocked

(since the rule doesn't apply) for a long period of time. In short, it is

quite possible for a 2 to exhibit a "hurry-up and wait'" behavior.
Assertions (i) - (iii) are in fact true, but to prove them we employ

some of the theory developed in the later sections. Our purpose in proving

the assertions now is to underscore the proof strategy which we shall employ.

We believe that it is an effective method of reducing the complexity of

this type of proof and is, therefore, worthy of special emphasis.

R 8 i R i b o s

The argument takes the following form:

(1) verify directly that the grammar computes the proper result
: for some convenient D-computation,

(2) find the time t required for the O-computation,

(3) show that the grammar (or one equivalent to it) is elementa:y,+

(4) appeal to the CR theorem (Section 4) which says that all

D-computations for elementary grammars compute the same result
and the time is less than (D+1)t.
This strategy renders the proof of (i) - (iii) quite painless as we saall
now see,

For correctness, it will be necessary to establish that the output is
correct only for a single D-computation. Naturally, we choose D to sim-
plify the proof and this is often the O-computation or an =-computation,
i.e. one where a specific sequence is chosen without regard for how long
an active position is delayed. For the problem at hand, a specific
l-computation is most convenient. In particular, for any string xo of

I1's and 2's, we choose the l-computation with the property:

x0 r—-x] provided 12 — 21 1is applied to all pairs

0 _0 g o
xj xj+l = 12 such that j 1is even.
i i+l ; ; i
X P—x provided all active coordinates in x actually chanye
(1 > 0)
0_0
This is clearly a l-computation, since any xj xj+1 = 12 where j {i«

odd will be delayed one step; the computation is then synchronous theieafter.

See Definition 2.8

PR SR SR

This particular computation has been chosen because it has the follow-

ing easily verified property:

(*) for i > 0, if i 1is odd (even) then x = 12 changes to

i+l i+l
%5 j+1

xi
i+l

i
3

=21 iff j 1is odd (even).

Thus, during the synchronous portion of this computation the only active
changes are to pairs with odd/even indices for odd computation steps and
to pairs with even/odd indices for even computation steps. This property
is important because it enables Floyd's theorem [5] on parallel sorting
networks to be envoked: We interpret the synchronous portion of this compu-
tation as a parallel sort (into descending order) using interchanges. The
interchanges of the sorting network are applied so that (*) holds. Floyd's
theorem establishes that a vector of n elements sorted in parallel accord-
ing to (*) halts with output in (descending) sorted order (all 2's to
the left) in n steps or fewer. Since one step is required to ''get into
phase," this l-computation halts with the proper result in n+l steps.
Thus, steps (1) and (2) are established. We find that (i) is true and
that the O-computation for it is time bounded by n+l. There is nothing
to do for (4), so all that remains is to establish (3).

Elementary grammars (see Definition 2.8) have three properties: single
change, persistence and determinacy.

Definition 2.5:. An asynchronous grammar G = <I, P> is single change

iff peP implies p 1s of the form
aag — aa'p

*
where a, Bel and a, a'el.

e T TN NP T A R 3 S 7

The single change property is fundamental since it enables a device
to change independently of its neighbors. This is obviously not a provperty
of Gl’ but it can be modified to be single change.
Example 2.5. Let G2 = <L, P> where
£ ={1,2,A,B} and
P= {12 — 1A
1A BA
BA Bl
Bl 21
B2 2271
The intuition here is that the intermediate states, A and B, implemen:
an "information passing" protocol where A means "a 2 is being sent
left and acknowledgement of receipt is requested" and B means 'the 2
has been received and is hereby ackncwledged.'" Thus, the first four
productions accomplish the 12 to 21 interchange. Production five
is required because a 1 (placed by BA —* Bl) could have already been

changed into a 2 due to the asynchronous execution.

Grammar 62 computes the same result as Gl‘ but 1€ is not

true that its time satisfies that required in (iii) above. Indeed,

the worst case behavior of 02 is 6((D+1)n)2. The difficulty can

be observed in the following example.

Example 2.6. Given G2, a portion of a legal l-computation for

111111222222 +— 111111A22222
+— 11111BA22222
— 11111B122222
t— 11111B1A2222
t— 11111BBA2222

SEATT N SR P A L

b= 31311 212227]

H
———

15

The underscored transition did not "fire'" and is now 'locked out." 'n the
worst case, it can remain so until a single 1 propagates all the way to

the right and the B's change back into 2's. It will then change according

Roai oo um ot

to the last production. Apparently, the computational requirements are

satisfied for Gz, but not the timing requirements. The solution, oif course,

is to add a new production.

Example 2.7. Let G3 = {1 2 8. BY, P>

P= {12 — 1A

1A — BA

BA — Bl

BE — Z1

B2 — 22

| BB —» 2B}

The difficulty with G is that it is not persistent.

2

Definition 2.6. An asynchronous grammar G = <, P> is persistent if

Vx,1,p and p'; xl—; y with Xy # Yyq and

L} - 1
xG—I—;, y' with X, =y

implies dp"e¢P such that y' k;h y" with ¥, - y;'

3 Persistence prevents an active transition from being '"locked out" by the

activity of its neighbors. Evidently, G, is persistent. G, also has

3 3

the other property required of an elementary grammar, determinacy.

; i ; . Definition 2.7. An asynchronous grammar G = <I, P> is determinate
A P
if Vx, 1, p and p' and coordinate i active in x, if
xb—; y with Xy # Yy and
L '
X h;qy with Xy # vy

then Yy = yi.

T T, T

7

et

W R R A AT

3% S

16

l
I
i
g,

4
1

.
Determinacy requires that there be a unique next state for any state change.

.

Hote that bl and G2

Definition 2.8. An asynchronous grammar is elementary if it is

are also determinate asynchronous grammars.

e P —

single change, determinate, and persistent.

Evidently G is elementary, so we can appeal to the CR theorem, thus

3

establishing (i) - (iii) for G3. Generally, we will be working with

single change grammars such as G3 and hence we'd be finished. Since

“l is not single change a few additional observations are required.

Clearly, for any D~computation of G1 on x, each
xi F—-xi+l
can be replaced by
xi F—-yl k—-yz F—-y3 e xi+1
where _v1 has A's in all positions that change from 2 to 1 as

x" b xi+l, y2 has B's to the left of the A's of yl and y3 has

1's in A positions yl. This is a legal 4D-computation for G

3
HHence (i) and (ii) must be true for Gl' Furthermore, if there is nc
§ such that all D~computations of Gl are time bounded by &(D+1)n,
no bound could exist for G3. By the CR theorem it does exist and
hence (iii) is established for Gl.

Definition 2.9, Let G = <f, P> be an asynchronous grammar and
x” e 17, A D-computation xo,xl,--', xm is said to halt if A X €)n

such that x" f— x. In this case ™ is called the result of the

D-computation.

0 S o 3 VMR S s =

17

3. Synchronization Capabilities

In this section we demonstrate that asynchronous linear arrays cannot
synchronize in any meaningful way. This will be done by showing that a
problem, weaker than the "firing squad synchronization problem' cannot be
solved. As noted previously, it is not surprising that the: ''standard
version" of this problem cannot be solved, but it is not even possible for

T

the two "soldiers' at the ends to 'fire' at approximately the same .time.

Definition 3.1. An asynchronous grammar G = <I, P> solves the

~t,h- firing squad problem provided

(a) (g,c,q} < Z,d I and

*
(b 1. o — B e P implies wu ¢ {q,c}
i a v [0 S & m
ii. for any D-computation X , X ,°**.x that halts

(where x0 = gqnc), Itg - tcl < f(n)

where
- K
B min{k|xl eyx}
- k '
e min{klxn+2 e}

iii. All D-computations can be extended to halting D-computations.

Informally, the conditions can be viewed as follows: g = ''general,"

q = "null state soldier," ¢ = "colonel," and ¥ = the set of "shoot"
states; g and c mark the ends of the array. Condition (bi) requires that
the process be initiated by the 'general," (bii) requires that the firing
times of the 'general" and '"colonel" be within f(n) of each other. Note
that the definition of tg and t. requires that only the first "bullet”

fired by the general, and the first "bullet" fired by the colonel are of

L w s

ik Ay n

s

§
;
@
k3
‘

interest. Thus, the classic solution solves the <0,0> firing squad

problem, i.e. the problem is solved synchronously with the general and
colonel (and all other soldiers) firing at the same time.

Theorem 3.1. Suppose that the asynchronous grammar G = <I, P>
solves the <f,D> firing squad problem with D > 0. Then there exists

a constant & > 0 such that f(n) > én.

Proof. Let G be given as required by Definition 3.1, and

*
xO,xl,---,xm be a halting O-computation where xo e {gq c}, |x0[= n+2 and

t min(klx? € 4}

8

e k
ok m1n(k[xn+2 € J}.

For each peP, writing p as waay —> a'by with a # b indicates the

rightmost changed symbol in p. Then let vp = max{|a'||peP}.
2
Similarly writing p as aay — aby' with a # b indicates the
lettmost change in p. Let w = max{|y'||peF].
i 1

Finally, we define w as w = max(wL,wR}.

That is, w 1is the maximum distance over which a single production
application can cause a éhange. Therefore, as with the classical firing
squad problem, no signal can travel from g to ¢ 1in less than n/w
steps; thus te 2 n/w. Now, suppose that f(n) <€ n/2w since if it were
not, the theorem is true. But, tg > n/2w since otherwise }tc—tg} > n/2w.
Therefore, both tg and tc are at least n/2w.

Suppose tg < tc (the other case is analgous). Without loss of
generality, let n/4w be an integer. Define k = tg - n/4w. Now, there
exists a l-computation

1 k k+1 k+s
X 43X 44X , ¥)

g pAT e
.
o b

e

TR L

19

with the property that yl,yz,n-,yn/2 fire at each step (if possible)
and Yot Tasz fire (if possible) at every second step.

Then the following are true:

(1) x§+1 = y§+l j= 1,2,---,%-- w and, in general
k+i k+i .
(ii) xj = yj j = 1,2,---,%-— iw.

+
Note that here xk+i refer to the O-computation and y? 8 refer to the

3
l-computation. For i = 1, by definition of the l-computation all

transitions on y§+l---y§+l take place exactly as for the O-computation.

> W
Thus (i) follows. For i > 1 a simple induction proves (ii).
& t
When 1 = n/4w, then xjg = ng on machines j = 1,+++,n/4. Hence
t =t' where
g g

! ; 2
tg = mln{liyl e,g}

and the '"general" fires at the same step in this particular l-computation
as in the O-computation. Now, analyzing when the '"colonel" fires, we

claim that for i = 1,2,++¢ ,n/4w

(1iL) x§+i = y§k+21 for j =n/2 + 1 4 iw,*++,n+2.
0f course, by construction, y2k+21 = y2k+21-1 for =n/2 + 1,0+, n + 2.

k| J
Clearly, (iii) holds also by induction. Now, when 1
t -1 2t _~2
xjg = yj 8 for j =n/2 +1+n/4 -w,eeo,n + 2.
t -1 2t =2 .
n+2 n+2 °

n/4w - 1, then

In particular, for large enough n, x Define

: 2
ty = minft)y ., e 5

£ =1 28 =2

. . g E g
Since tc - tg. X 42 { A . Therefore ¢ xy.

T

WA M o ! i N ARSNGB A

|
L

20

|t(':-tg|>t ~ 2, so
et =311 » g = 3,
c g g

It follows that

f(n) z nf2w = 1.

We note that although our theorem states only that f(n) = én we have
actually proven a somewhat stronger result, namely that f(n) 2 n/2w - 1.
The sharpness of this result is particularly noticeable for the case of
an ordinary array of machines with !al = 3 mentioned earlier. In this
case w = 1 so our result becomes f(n) > n/2 - 1. However, such a
single change grammar can readily be devised to 'find the middle" of an
array. Briefly, this can be accomplished by first getting the array
into a condition of "alternating 1's and 2's" 1in machines, then
applying grammar G, of Example 2.7 to move all 2's to the left and 1l's
to the right. Finally, the 21 boundary indicates the '"middle." Now,
firing from the middle outward gives a firing for which f(n) < nD/2.

The worst case being that one half fires at the fastest possible rate and
the other half fires at the slowest possible rate. Thus, for D =1 we
get the very tight lower and upper bounds of n/2 -1 < f(n) < n/2.
Although it seems clear that D should enter the lower bound in a
multiplicative way, so as to give fairly tight lower and upper bounds

for any D, it is not immediately apparent how D could be appropriately
introduced into the proof.

Theorem 3.1 can be viewed as being sharp in still another sense.

Given any D and any ¢ > 0 there is an asynchronous grammar that solves

TP,

.Q

3
ie
Z

=
5
3
{
&

the <f,D> firing squad problem with f(n) = en. The solution is just to

have the general send a signal down to the colonel. This signal causes each

machine to fire as it receives it. Since one can clearly send a signal from

the general to the colonel in < € n time by using productions of the form
k+1

sqk~—* s (s = shoot state, q = quiescent state) for k large, it

follows that one can solve the <f,D> firing squad problem with f(n) = en.

»

.
e e

N SRR

¥
v
»
4
:
¥
-
g‘
N

22

4. The CR Theorem

The objective of this section is to prove the CR theorem which
states that all D-computations for a given input and elementary grammar
yield the same result and the time required is less than or equal to
(D+1) times the O-computation time for that input. Several preliminaries
are required prior to the statement and proof of the theorem.

This entire section implicitly refers to an elementary grammar
G = <I, B>,

n

Definition 4.1. Let x e I and 1 £ k < n. Define fk(x),

a substitution function as

fk(x) = | yabgz if doaaB — abB ¢ P such that
X = yaaBz and]yaal = K
undefined otherwise.

Since G 1is elementary, it is determinate and hence fk(x) is well
defined. We next establish that for a single transition, the order
of application of the productions is immaterial. Notationally, if
f, g, h are substitution functions for x, let fgh(x) denote the repeated
function application

f(g(h(x))).
A A simple consequence of the definition of F— and the substitution
functions is given in the first lemma.

Lemma 4.1. xbk—y 1if y = f, eeof (x) where £, (x) is
————— dl dq di

defined, 1 s L = q.

Lemma 4.2. Let x e z" and fd () s i = q be & set of
i

substitution functions defined for x. Then for any permutation = on

{’!"..’q}’

fd“ ..ofd" (X) = fdl-o-fd (x) =
1 q q

Proaf. If fr(x) and f_(x) are defined, then r # s implies

n
frfs(x) = fsfr(x) =Sz e

since G 1is determinate and persistent. A straightforward induction on
the number of interchanges required to reorder n to 1l--<-q completes

the proof. |]

Suppose fd S B RS is the set of all substitution functions
il

defined for x, then we define x EZE y as y = fd '~'fd (X)- We .also

Il T
note that x Fi-x' i Si=te L () “for some 'k, s ks r.

e

The next lemma, illustrated in Figure 4.la, will be an integral part of the
induction of the subsequent lemma.

- | [U '
Lemma 4.3 If x e & 5 x ki‘y, x';;r x, yl;zf y imply x

Proof. Let fd (x) be all defined substitution functions for x,
i
From the definition of g;}, and Lemma 4.2
': .«
X fy £y () (1)
&)

: g Y (%)
b o

with renaming if necessary. Let fc (y) 1 <1i<q be all defined functions
1

for y. Then

y' = fcl“'fc fd (x)-
q r

alf o

Key

symbolic graphic
lT ——
m LEi
B TR
- sl

! ot Y
c LEMMA 45

=

x i N
. W,
/ \ WI\\ / \
X' Y k i
\\\ / S \WK
5 k. 9

\Yl .\‘_ / \wK‘H =Y

a. LEMMA 43

“(2) .
I
vl(D’”
: |

d STATEMENT OF CR THEOREM

I J
5/ " |
¥ Pl ﬂ S L yK(Ds)
a5
yeol ./
1I4»4 i \\4‘4 -
4 N,
/ w
uk+l N .
| CLAIMx (kei)D#1)
4

e PROOF OF PART (1) OF CR THEOREM

f. PROOF OF PART (2) OF CR THEOREM

Figure 4.1 Graphic representation of selected lemmas and theorens.

P = R = ——

i

’ R w
SN~ SO

25

By persistence fd fd €x) dis defined for all 1, Ll < i< r - I,
- SR

and so (f ,"',fd 1= {fc ,°",fc }. By Lemma 4.1 then we can

1 r-1 i q

reorder and substitute to get

d

' = { & 9 . e
y' = fe fe fd fd (x) (2)
) | s 1 r
for some f where
i
If. ,one b} m (F swn gk Fw QB w8 }.
"1 s 5 q o de1
Combining (1) and (2) and using the definition of FI-, it follows that
%)
x' f‘—l* y'. !

Lemma 4.3 is generalized in Lemma 4.4. The lemma and proof are illustrated
by Figure 4.1b.

* *
Lemna 4.4. T1f %X € T, XP—I ¥ Xf— x', yFE—_ y' then x'I— y'.

ar par g
Proof. We use induction on the number of applications of FI in
going from x to y. If x =y the result is trivial and when the length

is 1, the result follows from Lemma 4.3. Let

D, 1 ek k 1
R W PT- Fi-w FI'w =
k2 2. Let
e v 0 <1<kl
par

By Lemma 4.3,

= ekl

and since x and y' = w it follows that

B SR e 7 U s iy o

26

Figure 4.lc illustrates the next lemma.

*
Lemma 4.5. If x e I, x F—y and xk—_y' then yIsTy'.
—_— par 1

Proof. Let fd (x) be all defined substitution functions for
i

®e L sdas w,
Then

y = fd ...fd (x)
J r]

for some j < r by Lemma 4.1 and (possibly) renaming.
But

y' = £, eeef . (x) = £, seof (y)
| - G R

*
and hence vy rI y'e B
We can now state the main result of this section.
CR Theorem. Let G = <I, P> be an elementary asynchronous grammar
(3 i L 2
and x € I . Let x =u ,u ,u",**+,u be a halting O-computation of G on

x and x = vo,vl,v ,---,vm be any halting D-computation of G on «. Then

8o
¥ s

By Y o
) .
UGPSR PSSP S S ONS—

Note: If m < 2(D+l) we suppose the D-computation has been extended such

|
that m < p < 2(D+l) implies vP = v™. This theorem and its proof are

ot

B -

illustrated in Figure 4.1d - 4.1f.

Proof.

% (1) We prove this by induction on i. For 1 = 0, it is trivially
*
true. By hypothesis vi Fi-ui for i < k. By definition of
J+1

|
]
| ?
.
g

= b k
O-computation u .;:r u 0] <2 Define v 'i;r w

s i

+
for some w. By Lemma 4.4, w uk 1. But, by Lemma 4.5

* *
vk+1 Fi-w. Therefore vk+1 FI-uk+1.

(2) This is also proved by induction on i. For i = 0, the result

i(D+1)

*
is trivial. By induction hypothesis, ui FT v for i <k,

ke far D =4 =g,

and by definition of O-computation UJ’EEE u

*
Claim. 4w such that vk(D+l) %;} w FI-V

+
iptly D+l. (We prove the claim

k+

* *
in a moment.) By Lemma 4.4 u : ki-w and therefore uk+l vk(D+l)+D+1.

5
To see that the claim is true, let fd (vk(D+l))
2 i

be all defined functions,

then

" T k (D+1)
w = fd fd (v

1 q

)

by definition of 'EZf' For ‘1L S j s D+ 1 define f£ j j to be all

defined substitution functions such that

S DHL)+] SR (DHL)+i-1

=f '.of b
cj (o ;
1 q

).
J
But by persistence, the definition of D-computation and a reordering

argument similar to that of Lemma 4.2, er ,--~,fe such that
1 =

SR (DFL)+DHL _ KD+

P wesf £ ecsf,
el e, dl dq

and the claim follows. 0
The import of the CR Theorem can be seen in the following corollaries.

Corollary 4.1. Let G = <i, P> be an elementary asynchronous grammar

and x € R y € " 1s the result of any halting D-computation of G

e it

2N

: TV
- v e
.
SRS ISP > S <P

S
B

i

28

on x, then y is the result of all halting D-computations of G on x.

Corollary 4.2. Let G = <I, P> be an elementary asynchronous grammar

and x e I". If a O-computation of G on x halts in & steps, then any

D-computation of G on x halts in less than or equal to &(D+l) steps.

It is important to note that the requirements of determinacy and
persistence are necessary in the sense that the CR Theorem is false if they
are eliminated. This is clear for determinacy. Grammar G2 from Section 2,
which is not persistent and which executed in approximately nz rather
than n steps, demonstrates this for persistence. We shall have occasion
to use these two corollaries in the next section on recognition capabilities.

The connection between asynchronous computation and the Church-Rosser
property has been observed before by several researchers [6, 8]. The
contribution here is that in the presence of bounded delay (D < =) not only
do asynchronous coﬁputations "behave the same' but they operate in "about

the same time.'" In particular Corollary 4.2 is new, while Corollary 4.1 for

D = » can be proved fairly directly from results in [6] and [8].

5. Recognition Properties of Linear Asynchronous Grammars.

The goal of this section is to argue that the sets recognizable

by cellular l-dimensional arrays [10] in time t can also be recognized

by linear asynchronous grammars in time 3(D+1)t for all delays D 2 0.
Since cellular arrays can solve a wide class of recognition problems

in a synchronous and efficient manner, we can conclude that these problems
can also be performed asynchronously without serious time degradation.

The overall strategy begins by noting that any single change, determi-

nate asynchronous grammar (of which cellular arrays are a special case) can

be put into a normal form with certain properties. The next step is to
show how to construct a persistent grammar from the normal form grammar,
such that both grammars produce the same output in the synchronous case
(0-computations). Finally, we appeal to the CR Theorem to establish that
for any single change, determinate asynchronous grammar, there exists an
elementary grammar accepting the same set in time 3(D+l)t, where t 1is the
recognition time for a O-computation of the original grammar. The desired

result then follows as a corollary since cellular l-dimensional arrays

correspond to single change, determinate asynchronous grammars.

To simplify the exposition, we omit two details. First, we omit the
construction of the normal form and, secondly, we ignor the details involv-
ing the end-points of the array. For convenience, the reader can suppose
that the configurations are bounded by end markers and appropriate produc-
tions exist for handling the markers. The general case is unaffected by
this assumption.

Let G = <L, P> be any single change, determinate asynchronous

grammar. (Note that cellular l-dimensional arrays satisfy this requirement.)

30

Definition 5.1. A single change, determinate asynchronous grammar

GN = <L, PN> is a normal form for G, if there exists a k such that

(1) Ya— B e F la|] = k

N’

(ii) S S bl---bk € PN implies al...aLF/aJ = bl...bLF/%J

and

: 3 (k1) /241" 2% T P laeys2)+ Pk

] (1ii) o — B € PN <=> Hdp € P such that a r; B.

E Informally, requirement (i) states that all productions are of

the same size, while (ii) guarantees that the modification is to the

"middle" term in the production. This latter requirement implies, of
course, that k 1is an odd integer. Property (iii) requires the same

behavior from the two production sets on k length strings. It can

TSR T T T R ey

be seen that cellular l-dimensional arrays are represented by normal

|
% form grammars with k = 3. Let GN be a normal form for G and let
? m = (k+1)/2 in the sequel.
E | Lemma 5.1. For any G, there exists a GN.
%Qé Proof. This can be done by suitably padding out productions of
t#é the original grammar. The construction is omitted. 0
; i Lemma 5.2. If G 1is single change and determinate, then GN is
,‘; single change and determinate.
} i Proof. The single change property follows directly from Definition
: 5.1 (11) and the determinacy property follows from Definition 5.1 (iii). [
i jz 3 Lemma 5.3. Let xo,”-,xh be a O-computation for G and x0 = yo,“-,yh

| &
FlE be a O-computation for G v ’ .

N o0 X . Then x " =y 0 < 2 < h.

|

S S S

!
4
l
!

B NP LT B Ty o

e

31

Proof. By induction on 2. For £ = 0 the result is immediate.

3 L+
Suppose it is true for all i < &. If xj = xj 1, no p € P applies at
j dAn xl. If Py € PN applies at j 1in yz, requirement (iii) is
+

contradicted, so x§+l = y§+1. If x§ # x§ 1, some p ¢ P applies at j
:) ot Pl
in x . Let a = xj-m+l xj+m—1' Then « F;'B and by (iii), a — B ¢ PN

% +
implying j active in yz. Thus xj+1 = y§ 1. 0

Having found a normal form for G, we now seek to construct a
new grammar G' which is persistent. We first require a definition.

Definition 5.2. Let G, = <I, P

N > be a single change, determinate

N

asynchronous grammar in normal form. The completion of GW is a system

4

G- = <%, Pc> such that Pc = PN v {a — al 18, a — B e PN}.

Informally, the completion of GN has the production set as GN with all
"idling" productions added. Thus, the completion is not an asynchronous
grammar. This is no problem since the completion will be transformed

into a legal asynchroncus grammar below.

A few comments are in order about the forthcoming construction. The

goal is to achieve persistence. The technique by which this is accomplished

is to define a protocol that enables each device to acquire inputs from

its neighbors. The protocol is basically three fold: (1) a device announces

its intention to change state. At this point, every neighbor that depends
upon the device's current value for their next state change must now
retrieve the input. This is done by having the neighbors announce their
intent to change state. When all the neighbors have announced, (2) a
device is allowed to perform its transition. After the device and its

neighbors have changed state, (3) they acknowledge that fact by becoming

e el
PR, BN

&
-4

S Al P S

quiescent. A new cycle is then ready to begin. The purpose, there-ore,

for completing the grammar is to enable transitions that wouldn't otherwise
fire to receive input, even though no new state change will result.

Definition 5.3. Given Gc = <I, Pc> the completion of an asynchronous

grammar, define the alphabet sets

;l_ a e e 0 L LN) L
e {[b]l ayc-ca, jaa . °cca — a; am~lbam+1 akePc}

|

- {[E]| a;*+ra _aa

L TG Tl P R L L

) b
Low™ {b’[-] € Za}.

a
Informally, each element of £ is a state a device enters when it announces
its intent to change from state a to state b. Each element of I is
a transition state it enters before becoming quiescent. Each element of

X1* is a quiescent state. We next define the productions for the new

grammar from the completion.

Definition 5.4. Given the completion Gc = <I, PC> of a normal

form grammar define the production sets

a
m
(cl €r13pC c, — ¢ ¢ [bm]c

-1%nSm+1 k 1 m-1 w1l k

|alo.oam'noak —_— aluctbm---ak € PC and
a

; i kg
cy € L \J(ai} I <t sk and L # m},

e e AR A o L

P =
t

(d,+d

a

m
-1 by 1 e

m

m+1 1

lalu..amonoak —_— aln.-bmo.oak €

al-o.bm--oak

1 < AR

(R)
(a;)
The Pa productions accomplish the
may or may not have announced when

productions perform the transition

have either performed the transition or announced. The

return to quiescent state where the

33

b
dpglmldy,y0oedy

and

and {1 # m},

em—lbmem+1'"e

k

P
C

and

i # m}.

announcing task. Note that the neighbors

The P

a given position does so. "

and they require that the neighbors
Pq productions

neighbors have either done so as

well or at worst, they have performed their transition.

U 8

5
ael

Let U Ea in the seque

Lemma 5.4.
asynchronous grammar.
In the sequel we will use G'

Proof .

Lemma 5.5. G' 1is determinate

Proof.

Immediate, by construction.

Lo

G =Ry (GRS Pa UPt L)Pq> is a single change

for this grammar.

3

Determinacy is vacuously satisfied since no two productions

have the same left hand side and all productions change only the middle

0

symbol.

/

/////

//C/’)(.

///// i-m+|

@7 /

7 9

//

///

1+m-—|

.

N
R\\\ N

B

PRODUCTION p APPLIES AT i IN X

PRODUCTION p' APPLIES AT £ IN X

Figure 5.1.

Production application with overlap.

pallvasiomlliadap i ailhobeddis v . B i A AR AR : . e W Fealsteu S g

-
4
4
&
&
=
A
=
-

35
Lemma 5.5. G' 1is persistent.
Proof. Let x F;-y for some p € Pa UPt LJPq such that Xy # Yy

4 L ' = '
and xi~;. y for some p’ ¢ Pa L)Pt L)Pq such that X, yi. Assune, in
contradiction to the persistence requirement, that Vp'" e Pa LJPth Pq such

' L " = L L L ,‘..
that vy F;" y" implies y! # Yi- Let p = ujereu =ocu —> ujteeupeccuy and

B e ——

(o ooy sss Co Gar e i
p vy Tt e, S, S Thus x*—; y implies

Ll il o1 ok

and x|—;, y' 1implies

cos = o [i L s 2 < 1+ =
xi—m+l x“_m_1 vl vk for some with T m g m 1

since otherwise p would still be active at i in x. (See Figure 5.1)

Moreover, since X = yi, i # 2. Define j = i-2, then
* = =
(*) TR, M and
Kk = =
AR5 xl vm um—j
Case 1. (p € Pa). By construction, p € Pa implies u € Yu - But (%)
implies Vm+j € .I, so p'¢ Pt' TESSp e Pq, then the construction implies
v._e I for some a, but (¥*) implies wu_ . e I contradicting p < P_.
n a m-j a a

&
Therefore p' ¢ Pa, and vé € & for some a. But by construction, a

production wl“'wm“'wk _—r wl-“wr'n"'wk exlisgts such that 1 = 2 < k,

z # m-j, U= and wm-j =

a

A A Moreover, w' = u'. Thus, the
m m m

assumption is false if p ¢ Pa.

Case 2. (p € Pt)' By construction p € Pt implies u € t® for
a
* e ' '
some a. But (*) implies vm+j € & 80 P’k Pq. 5E D' Pa’ then the
construction implies Vo € L, but (**) implies um—j €l contradicting

p € Pt' Hence, p ¢ Pt’ and vé € Za for some a. But by construction,

a production LR R T wl---w&---wk exists such that 1 < z < Kk,

- = : X L_. Moreov vomals s Thu
z # m-j, R and wm_J . " oreover, w. = u! s the

assumption is false, if p ¢ Pt'

Case 3. (p € Pq). By construction, p € Pq implies u € Ea for

* . = 1
some a. But (*) implies vm+i € Za’ so p' ¢ Pa' Bl e Pt’ then the

construction implies Vo € Za, for some a, but (**) implies u_ , ¢ >

m=j
contradicting p ¢ Pq. Hence, p' ¢ Pq. An argument similar to the above

guarantees a production, so the assumption is false if p ¢ Pq. g

Lemma 5.7. The sequence xO,xl,---,x3h is a O-computation sequence

fFor. - €& on x0 iff xo = yo,yl,“',yh is a O-computation sequence for G,\J

on xo, and y:L = x31 0 s e < hi

Proof. Clearly, by construction

g7 g gH { s B,0,2, 5,38

3i+1 a,n
J = - o0 -
X € (aezZ } (025 % ,3(h-1)

3142 n X
x € {a%&xa} = 0,1, ,3(h-1)

*
since xo,xl,-“,x3h is a O-computation. Suppose x0 — x31 satisfies the

lemma for 1 = 0,1,+++,2. To prove the if part, let Py € Pa apply at j

in x32, then x32 F; xn+1 and x§2+1 = [:] for some a,b ¢ I. Each of
1

the m-1 neighbors on either side is in a state chosen from ;:Eza as well.

Hence there 1is P, € Pt such that x3E+1 k; x31+2 X?Q+‘ - [b].
5 -

Now, the m-1 neighbors on either side are in a state chosen from

LJ.Za. Hence some Py € Pq applies and x32+2'__ x3(2+1)

ael. P3

and

such that

e

—————

——

1
o
i
!
|
5
i

B

&
tu

!

E

G7

-+ z
x?(l 1) = b. But, by construction, these three transitions imply there

i

0
exist p ¢ Pc such that x3L Fg-x3(g+l) with x;(2+1) = b. If a#b
then p e P, and so x3(2+1) = y2 If a = b, no production in

N j - 5
) . 2 2 +1
P applies (p was added by completion) and yj = yj at the (2+1)

N
step of the O-computation of GN on xo.

st

To prove the only if part, suppose in the O-computation of GN on X,

+ .
1. If p 4s aetive at j in yl, P € Pc' 163 yj = yj 5 &

completion production has been added. 1In either case, according to the

: ; 32 3241
construction a production Py € Pa exists such that x~ ¢— x
L

92
v e

with

] and y§ = a and y§+1 = b. It is easily observed that

+ 3(0+
other productions exist such that x32+1 F—-X3Q 2 xj(Q 4
e

x%(i+l) =B =y 0
J J
Theorem 5.1. Given a single change, determinate asynchronous grammar

x3i+l = [a
i b

— and

G = <I, P> there exists an elementary grammar G' = <I',P'> such that

h
Vo and VD> Uy if x0 e £ and x0,°°-,x * is halting O-computation

of G o©h xO, then th such that
0 hy 0
CLI XLt X is a halting D-computation for G' on x with

h h
X & x . and

(ii) h2 s 3(D+l)h. .
L
Proof. Form GN’ the normal form for G. Complete the normal
form and construct G' . The O-computation for these grammars yield

the same output with G' operating at most 3 times slower than G. By

the CR theorem of the previous section, G' satisfies (i) and (ii)

since it is elementary, by Lemmas 5.4, 5.5, and 5.6. []

R Ot S P

38

Corollary 5.1. A set recognized by a cellular l-dimensional array

in time t is recognized by some elementary grammar, asynchronously, in

time less than or equal to 3(D+l)t, for all D = O.

Proof. Let &: £ x £ x I — I be the transition function for
the cellular l-dimensional array [10]. Then define G = <I, P> where

aja,a; —> albza3 € P ifE G(al,az,a3) = b2, with a, # b2’

Val,az,a3,b2 e B0

39

6. Conclusions

What we have done in this paper is to introduce the notion of bounded
delay asynchronism and to study some of its properties in terms of a very
special structure which we called linear asynchronous structures. We have
shown three main results. First, that these structures cannot be synchro-
nized well; the 'gap between firings'" is a function of the number of elements
in the structure. Second, that under suitable hypotheses (elementary gram-
mars) the systems compute unique values, and are not much 'slower' than
synchronous structures, and finally that these systems are computationally
as powerful as synchronous systems.

Several natural questions arise. The first is: What happens for
more complicated structures? Natural extensions would be to higher dimen-
sional uniform structures and to tree and graph structures in which each
node had the same in and out degree. It would seem that similar results
could be obtained.

The second question arises from our CR Theorem in Section 4. We have
alrecady shown in Section 4 how there is an intimate connection between Church-
Rosser systems and linear asynchronous sfructures. But our CR Theorem says
something more than the usual Church-Rosser type result by introducing timing,
or number of steps, comparisons between the ''shortest'" and '"longest" paths to
the unique result., The question, then, is how or when can such timing results
be obtained for other types of Church-Rosser theorems? Clearly, they do not
hold in general since some Church-Rosser sysgems can have "unbounded delay."
Also, one could have bounded delay but some sort of looping behavior that
could give rise to no tight bound existing for timing. Nevertheless, it would

be interesting to characterize, for general Church-Rosser systems, when

various types of bounds on timing hold.

9 . " PORPTeS e - — e il T e g P < il
o " o PR & oo
e =

40

Acknowledgement

The authors wish to thank A. Meyer, M. Paterson, and L. Valiant for
pointing out that an earlier version of Theorem 5.1 could be strengthened.

References

. [1] A. Church and J. B. Rosser, 'Some properties of conversion,'" Trans.
i Am. Math. Soc. 39 (1936) 472-482. |

[2] S. N. Cole, "Real-time computation by iterative arrays of finite-state
8 machines," Doctoral Thesis, Report BL-36, Harvard University, 1964.

! [3] H. B. Curry and R. Feys, Combinatory Logic, North-Holland Publ. Co.,
Amsterdam, 1958.

| [4] P. C. Fischer, "Generation of primes by a one-dimensional real-time
iterative array," JACM, 12, No. 3, (1965) 388-394.

—
o
—

R. W. Floyd in D. E. Knuth, The Art of Computer Programming, Sy P 24
Problem 36.

[6] R. M. Keller, "A fundamental theorem of asynchronous parallel
computation," Third Annual Sagamore Conf. on Parallel Computation, 1974.

[7] F. i, Moore, "Th: "iring squad synchronization problem," Sequential
liachines, lelected Papers, Addison-Wesley, (1964) 213-214.

(8] &. K. Rosen, "Tree-manipulating systems and Church-Rosser theorems,"
JACM, 20, No. 1 (1973) 160-187.

B | - | G. Rozenberg and A. Salomaa, Editors., Lecture Notes in Computer Science,

k| 15, L Systems, Springer-Verlag, lysa.

.[.; v'
‘ 0] A. .. omith, "Real-time language recognition by one-dimensional cellular I

automata,'" JCSS, 6, (1972) 233-253, iy

i
1

